1.1 Set, Sequences, Limits and Series, (un)countable sets
countable-sets-image1-2e02c59e4654512abfbe67167a6148dc.jpg)
countable-sets-image2-781e2c4f11f44d00a79c424366063b47.jpg)
countable-sets-image3-38f46fbc6a5aeaa40fa58b008af351c2.jpg)
countable-sets-image4-56ece259cb5cea79ee923bb4fc5563a5.jpg)
countable-sets-image5-1d091d62e2cd33d3dc4c8f571539bc5f.jpg)
Sequence can converge to a number
countable-sets-image6-fd3ef2abe9538d64e7554e6d3763c10a.jpg)
- monotonic series - If a series is an increasing sequence or decreasing sequence, we call it monotonic. A monotonic sequence always converge to either a finite number or infinity
countable-sets-image7-0f22eaad0f854728241434e9e13136b5.jpg)
countable-sets-image8-88c891bcaf82b6d1a402a8640d70e477.jpg)
countable-sets-image9-2f5a4e68388621cebb0a81dbff1f9abd.jpg)
countable-sets-image10-255642ee1bbb9d76fc49df91cb60804a.jpg)
Countable - Able to arrange all the elements of a sample space in a sequence
countable-sets-image11-91df051b1bfe8b97000127681de8e592.jpg)