10. Functional Programming Modules
10.1. itertools - Functions creating iterators for efficient looping
10.2. functools - Higher order functions and operations on callable objects
10.3. operator - Standard operators as functions
10.1 itertools - Functions creating iterators for efficient looping (iterator algebra)
Python Tutorials - Python Itertools Playlist
1. Infinite Iterators
Iterator | Arguments | Results | Example |
---|---|---|---|
count() | start, [step] | start, start+step, start+2*step, ... | count(10)-->1011121314... |
cycle() | p | p0, p1, ... plast, p0, p1, ... | cycle('ABCD')-->ABCDABCD... |
repeat() | elem [,n] | elem, elem, elem, ... endlessly or up to n times | repeat(10,3)-->101010 |
2. Iterators terminating on the shortest input sequence
Iterator | Arguments | Results | Example |
---|---|---|---|
chain() | p, q, ... | p0, p1, ... plast, q0, q1, ... | chain('ABC','DEF')-->ABCDEF |
compress() | data, selectors | (d[0] if s[0]), (d[1] if s[1]), ... | compress('ABCDEF', [1,0,1,0,1,1])-->ACEF |
dropwhile() | pred, seq | seq[n], seq[n+1], starting when pred fails | dropwhile(lambdax:x<5, [1,4,6,4,1])-->641 |
groupby() | iterable[, keyfunc] | sub-iterators grouped by value of keyfunc(v) | |
ifilter() | pred, seq | elements of seq where pred(elem) is true | ifilter(lambdax:x%2,range(10))-->13579 |
ifilterfalse() | pred, seq | elements of seq where pred(elem) is false | ifilterfalse(lambdax:x%2,range(10))-->02468 |
islice() | seq, [start,] stop [, step] | elements from seq[start:stop:step] | islice('ABCDEFG',2,None)-->CDEFG |
imap() | func, p, q, ... | func(p0, q0), func(p1, q1), ... | imap(pow,(2,3,10),(5,2,3))-->3291000 |
starmap() | func, seq | func(*seq[0]), func(*seq[1]), ... | starmap(pow, [(2,5),(3,2),(10,3)])-->3291000 |
tee() | it, n | it1, it2, ... itn splits one iterator into n | |
takewhile() | pred, seq | seq[0], seq[1], until pred fails | takewhile(lambdax:x<5, [1,4,6,4,1])-->14 |
izip() | p, q, ... | (p[0], q[0]), (p[1], q[1]), ... | izip('ABCD','xy')-->AxBy |
izip_longest() | p, q, ... | (p[0], q[0]), (p[1], q[1]), ... | izip_longest('ABCD','xy',fillvalue='-')-->AxByC-D- |
3. Combinatoric generators
Iterator | Arguments | Results | Examples |
---|---|---|---|
product() | p, q, … [repeat=1] | cartesian product, equivalent to a nested for-loop | product('ABCD',repeat=2), AAABACADBABBBCBDCACBCCCDDADBDCDD |
permutations() | p[, r] | r-length tuples, all possible orderings, no repeated elements | permutations('ABCD',2), ABACADBABCBDCACBCDDADBDC |
combinations() | p, r | r-length tuples, in sorted order, no repeated elements | combinations('ABCD',2), ABACADBCBDCD |
combinations_with_replacement() | p, r | r-length tuples, in sorted order, with repeated elements | combinations_with_replacement('ABCD',2), AAABACADBBBCBDCCCDDD |
Permutations of a string python function
def toString(List):
return ''.join(List)
# Function to print permutations of string
# This function takes three parameters:
# 1. String
# 2. Starting index of the string
# 3. Ending index of the string.
def permute(a, l, r):
if l == r:
print(toString(a))
else:
for i in range(l, r + 1):
a[l], a[i] = a[i], a[l]
permute(a, l + 1, r)
a[l], a[i] = a[i], a[l] # backtrack
# Driver program to test the above function
string = "ABC"
n = len(string)
a = list(string)
permute(a, 0, n-1)
Runtime - O(n^2 * n!)
Itertools.chain()
Without the chain() function, iterating over two lists would require creating a copy with the contents of both or adding the contents of one to the other.
import itertools
l1 = ['a', 'b', 'c']
l2 = ['d', 'e', 'f']
chained = itertools.chain(l1, l2)
chained
<itertools.chain object at 0x100431250>
[l for l in chained]
['a', 'b', 'c', 'd', 'e', 'f']
Itertools.izip()
izip() is almost identical to the zip() builtin, in that it pairs up the contents of two lists into an iterable of 2-tuples. However, where zip() allocates a new list,izip() only returns an iterator
Itertools.product()
This tool computes the cartesian product of input iterables.
from itertools import product
print list(product([1,2,3],repeat = 2))
[(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)]
print list(product([1,2,3],[3,4]))
[(1, 3), (1, 4), (2, 3), (2, 4), (3, 3), (3, 4)]
A = [[1,2,3],[3,4,5]]
print list(product(*A))
[(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 3), (3, 4), (3, 5)]
B = [[1,2,3],[3,4,5],[7,8]]
print list(product(*B))
[(1, 3, 7), (1, 3, 8), (1, 4, 7), (1, 4, 8), (1, 5, 7), (1, 5, 8), (2, 3, 7), (2, 3, 8), (2, 4, 7), (2, 4, 8), (2, 5, 7), (2, 5, 8), (3, 3, 7), (3, 3, 8), (3, 4, 7), (3, 4, 8), (3, 5, 7), (3, 5, 8)]
def product(*args):
if not args:
return iter(((),)) # yield tuple()
return (items + (item,)
for items in product(*args[:-1]) for item in args[-1])
In set theory(and, usually, in other parts of mathematics), a Cartesian product is a mathematical operation that returns a set(or product set or simply product) from multiple sets. That is, for sets A and B, the Cartesian productA×Bis the set of all ordered pairs(a, b) where a∈A and b∈B. Products can be specified using set-builder notation, e.g.
A table can be created by taking the Cartesian product of a set of rows and a set of columns. If the Cartesian product rows×columns is taken, the cells of the table contain ordered pairs of the form (row value, column value).
More generally, a Cartesian product of n sets, also known as an n-fold Cartesian product, can be represented by an array of n dimensions, where each element is an n-tuple. An ordered pair is a 2-tuple or couple.
https://en.wikipedia.org/wiki/Cartesian_product
Subset of a given length
from itertools import combinations
# return all subset of size 2
list(combinations([1,2,3], 2)
Number of elements in a given set of size n with subset size r = nCr (3C1 = 3, 3C3 = 1)
Powerset (all subsets of a set)
from itertools import chain, combinations
def powerset(iterable):
"powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)"
s = list(iterable)
return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))
from itertools import chain, combinations
def powerset(lst):
return chain(*map(lambda x: combinations(lst, x), range(len(lst)+1)))
for i in powerset([1,2,3]):
print(i)
()
(1,)
(2,)
…
10.2 Functools
Partial functions allow us to fix a certain number of arguments of a function and generate a new function.
from functools import partial
# A normal function
def f(a, b, c, x):
return 1000*a + 100*b + 10*c + x
# A partial function that calls f with
# a as 3, b as 1 and c as 4.
g = partial(f, 3, 1, 4)
# Calling g()
print(g(5))
>>>3145
from functools import partial
# A normal function
def add(a, b, c):
return 100 * a + 10 * b + c
# A partial function with b = 1 and c = 2
add_part = partial(add, c = 2, b = 1)
# Calling partial function
print(add_part(3))
>>>312
https://www.geeksforgeeks.org/partial-functions-python
from functools import cache, lru_cache
@cache / @lru_cache(maxsize=5)
def fib(n):
if n <= 1:
return n
return fib(n-1) + fib(n-2)
References
https://julien.danjou.info/python-and-functional-programming